首页> 外文OA文献 >On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex
【2h】

On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex

机译:依赖于计时定时的可塑性,忆阻装置和构建自学习视觉皮层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a very exciting overlap between emergent nanotechnology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nanotechnology devices to the biological synaptic update rule known as spike-time-dependent-plasticity (STDP) found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on a behavioral macro-model for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forward but also backward. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can assembled and how it is capable of learning to extract orientations from visual data coming from a real artificialCMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim of this paper is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three-terminal memristive type devices. All files used for the simulations are made available through the journal web site.
机译:在本文中,我们介绍了新兴的纳米技术与神经科学之间非常令人兴奋的重叠,这已被神经形态工程师发现。具体而言,我们将一种类型的忆阻器纳米技术设备链接到在实际生物突触中发现的称为突波时间依赖性可塑性(STDP)的生物突触更新规则。了解此链接后,神经形态工程师可以开发电路架构,该电路架构使用此类忆阻器来人工模拟视觉皮层的各个部分。我们将重点放在称为电压或磁通驱动忆阻器的忆阻器类型上,并将讨论重点放在此类器件的行为宏模型上。这些实现导致神经元的完全异步体系结构不仅向前而且向后发送其动作电位。一个关键方面是使用产生特定形状的尖峰的神经元。我们将看到如何通过改变神经元动作电位尖峰的形状来调整和操纵针对兴奋性和抑制性突触的STDP学习规则。我们将看到如何将神经元和忆阻器相互连接,以实现遵循一类乘性STDP学习规则的大规模峰值学习系统。我们将简要扩展架构,以使用具有类似忆阻特性的三端晶体管。我们将说明V1视觉皮质层如何组装以及如何学习从真实的人工CMOS反射视网膜观察现实场景的视觉数据中提取方向。最后,我们将讨论当前可用的忆阻器的局限性。给出的结果基于行为模拟,没有考虑设备和互连的非理想性。本文的目的是通过一种教程的方式,为利用两端或三端忆阻型设备开发完全异步的STDP学习神经形态架构的可能框架提供一个初始框架。用于模拟的所有文件都可以通过期刊网站获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号